
AP[®] CHEMISTRY 2019 SCORING GUIDELINES

Question 5

The complete photoelectron spectrum of an element in its ground state is represented below.

Binding Energy per Electron (J)

(a) Based on the spectrum,

(i) write the ground-state electron configuration of the element, and

$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$ or [Ar] $4s^2$	1 point is earned for the correct answer.
--	---

(ii) identify the element.

Ca	1 point is earned for the correct answer.
----	---

(b) Calculate the wavelength, in meters, of electromagnetic radiation needed to remove an electron from the valence shell of an atom of the element.

Energy (E) required = 0.980×10^{-18} J $E = hv = \frac{hc}{\lambda} \implies \lambda = \frac{hc}{E}$	1 point is earned for the correct identification of the energy required to remove an electron from the valence shell (may be implicit).
$\lambda = \frac{(6.626 \times 10^{-34} \text{ Js})(2.998 \times 10^8 \text{ ms}^{-1})}{0.980 \times 10^{-18} \text{ J}}$ $\lambda = 2.03 \times 10^{-7} \text{ m}$	1 point is earned for calculating the correct wavelength.